If it's not what You are looking for type in the equation solver your own equation and let us solve it.
13x^2+8x-96=0
a = 13; b = 8; c = -96;
Δ = b2-4ac
Δ = 82-4·13·(-96)
Δ = 5056
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5056}=\sqrt{64*79}=\sqrt{64}*\sqrt{79}=8\sqrt{79}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-8\sqrt{79}}{2*13}=\frac{-8-8\sqrt{79}}{26} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+8\sqrt{79}}{2*13}=\frac{-8+8\sqrt{79}}{26} $
| n-5=4n+15 | | x-295=180 | | 4m-5=33 | | 4m–5=33 | | -94x-84=0 | | 3x+5=2x+x-6 | | -10p=66 | | -72=n/5 | | 4x–7=8–2x | | 8q-1=22 | | -32v=16 | | 132v=16 | | 2x+37=12x-37 | | x+84+27=180 | | s*6-28=74 | | 8h+60=70 | | h+5.5=6.2 | | w-45=-38 | | w-2=7/8 | | 5/7+k=6 | | 5a+7=8a-23 | | t-5/9=1/9 | | n+7/10=10 | | t+3/4=6 | | 5(2^x)=7^2-x | | y-7=2/3 | | (3x–6)-(7x-21)=9. | | 3+d^2^=19 | | g-1.8=4.3 | | 5q+17=15 | | 15=5-5y | | 22+m=47 |